
APPENDIX A

Drive Forward Experiment

void setup()
{
 motors.drive(255); // Turn on Left and right motors at full speed forward.
 delay(2000); // Waits for 2 seconds
 motors.stop(); // Stops both motors
}

void loop()
{
 // Nothing here.
}

[motors.drive([motorPower])​ turns both motors. This method takes one input parameter,
[​motorPower​]. [motorPower] can be any integer value from -255 to +255. Values > 0 will
cause the robot to drive forward -- spinning the right motor clockwise (CW) and the left
motor counter-clockwise (CCW) -- driving the robot forward. Values < 0 will do the
opposite causing the robot to drive in reverse.

motors.drive(255)​; // drives forward at full power. ​motors.drive(-255​); // drives reverse at
full power​. [STUDENT DOES=NEW] Measure the distance your robot travels in 2
seconds. [TEACHER NOTES: 110 cm in 2 secs]
Sometimes running the motors at full power causes the wheels to spin-out. If you notice
traction issues, you may want to try playing around with slower speeds.

Stopping ​motors.stop()​; turns off power to both motors and coasts to a stop.

motors.stop();​ // sets the motor speeds to 0 and coasts to a stop.
Sometimes, you might want a more precise stop. the RedBotMotors class also has a brake()
method that forces the motors to come to a more abrupt stop.

Try replacing the ​motors.stop()​; with ​motors.brake()​; in your example code. ​[STUDENT
DOES=NEW] Measure the distance your robot travels.

Positive speeds cause the RedBot to go forward by spinning the right side clockwise and the
left side counter-clockwise. To control the individual motors, the RedBotMotors class has
two methods that are used.
 ​motors.rightMotor([motorPower]);​ // controls the right motor
 ​motors.leftMotor([motorPower]);​ // controls the left motor
Similar to the .drive([motorPower]) method, [​motorPower​] values can vary from -255 to
+255. Positive values spin the motor in the clockwise direction and Negative values spin the
motor in the counterclockwise direction.

Turning Corners Experiment:
You may need to adjust the speeds and the delay() times to get a good angle. We can write a
sub-routine called ​turnAngle()​. This function will use the average turningSpeed you
calculated. ​Take the motorPower that you used and the turningTime to calculate the
"turningSpeed" of your RedBot. We define turningSpeed = angle / time. In this case, it should
be 90 degrees divided by the turningTime you used. Write down your turningSpeed.

Copy and paste this block of code to the end of your program -- after the void loop(){}

void turnAngle(int angle)
{
 int turningSpeed = 180; // degreees / second

 long turningTime;
 turningTime = (long) 1000 * angle / turningSpeed;

 motors.rightMotor(-100); // Turn CCW at motorPower of 100
 motors.leftMotor(-100); // Turn CCW at motorPower of 100
 delay(turningTime); // turning Time
 motors.brake(); // brake() motors
}

Now, replace your turning code with a function call turnAngle(90); ​Upload and test.​ Your
RedBot should still be turning 90 degrees. If it's turning too far or not far enough, then
adjust the variable turningSpeed until your RedBot is turning a good 90 degrees. You can
now change the turning angle as needed. Use this with the ​driveDistance()​ function to
travel a distance.

The RedBot is pretty nimble, so we want to use a lower motorPowers for pivoting. In our
example, we set the motorPower to 100 and the delay time to 0.5 seconds. Play around with
this until you're able to get your robot to turn a nice 90 degree turn consistently.

[TEACHER QUESTIONS: ​Too abrupt of a turn? How can I turn more gradually? Play
around with varying the power to the right side vs. the left side.]

APPENDIX B

Appendix C
1. Run a minimum of 5 trials of the Drive Forward with your robot and measure how

far your robot travels in 2 seconds.
Trials Distance Traveled Time traveled
1
2
3
4
5

Average

2. Calculate the average speed of your robot (in inches per second) using the equation:
avgSpeed = distance / time.

Route (steps)
command

Scale Drawing
Measurements

Measurements
needed for
actual drawing

Distance
converted
to time

Code language

1
2
3
4
5
6
7
8
9
10

